
¦ 2021 Vol. 17 no. 1

Python for Research in Psychology

Introduction to Python’s Syntax

Kinsey Church
aB

, Thaddé Rolon-Mérette
a
, Matt Ross

a
& Damien Rolon-Mérette

a

a
Université d’Ottawa

Abstract This tutorial is the second in our series and covers basic syntax in Python with examples

related to psychology. The aim is to teach programming beginners and experts alike the funda-

mentals required in order to smooth the learning curve and succeed with integrating Python with

their research. It starts by covering basic built-in functions and variable creation. Next, different

data types and data structures that you will encounter are covered detail, followed by comments

and best commenting practices. Finally, indentation, logic, conditional statements, and loops are all

explained with simple, illustrative examples. The tutorial ends with a comprehensive example of

the same-different task from cognition that ties together everything learned. With this foundation,

the reader will gain the confidence to begin practicing Python on their own and think of ways to

incorporate it into their own research and daily lives.

Keywords Python, Psychology, syntax. Tools Python.

B KCHUR026@uottawa.ca

10.20982/tqmp.17.1.S001

Acting Editor
Nareg Berberian

(University of Ot-

tawa)

Reviewers
Matias Calderini

Introduction
Leaning Python is like learning a new language. To master

it, it is important to have a strong foundation in its struc-

ture and different components, much like understanding

the sentence structure and parts of speech of any language.

While this may seem challenging, there are a number of

resources that can be used to soften the learning curve

(Harwani, 2012; Ngo, 2017; Pine, 2019; Summerfield, 2010;

Van Rossum and Drake, 2011). Unfortunately, the majority

of them are not tailored towards the field of psychology.

This tutorial aims to fill in this gap by covering the basics

of Python’s syntax and introducing examples relevant for

psychology. It is highly recommended to follow the previ-

ous tutorial first: “Introduction to Anaconda and Python:

Installation and Setup.” To better learn from the examples

presented in this tutorial, we recommend that you open

Jupyter notebook to follow along with the examples pre-

sented. The advantage of using an integrated development

environment (IDE), such as Jupyter notebook, is that it will

colour code the different aspects of your script to make it

easier to read and provide debugging assistance. This tuto-

rial is divided as follows: an introduction to variables, data

types, data structures, comments, indentation, logic state-

ments, loops, and a comprehensive example related to the

field of psychology.

Getting Started
We begin the new project by opening the Jupyter notebook

IDE. As per any new project, wewill start by creating a new

notebook/Python script, naming it, and saving in a desired

location. In this project, we are creating three variables,

each named after a famous psychologist (Freud, Bandura

and Vygotsky) and will attribute a quote to each one. To

accomplish this, we use a single equal sign (=) to specify

that the variable name (Freud) contains/represents what is

on the other side of the equal sign (‘The voice of the intel-

lect is a soft one, but it does not rest until it has gained a

hearing.’). It is important to put quotation marks around

the attributed phrases. This will change the colour of the

quote from black to red and create what is called a string

(more on this later). Once all three variables are correctly

defined as per Fig. 1., press ‘Run’ to execute the cell. This

will save your variables and their contents for future use.

A quick example would be to use the print() function to
display each quote. To use this built-in function, simply

write print() and insert your variable name in-between
the parentheses. Once completed, execute your coding cell

The Quantitative Methods for Psychology S12

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.S001
https://www.orcid.org/0000-0002-6103-8040
https://www.orcid.org/0000-0001-7320-1282
https://www.orcid.org/0000-0001-7681-9803
https://www.orcid.org/0000-0003-2308-078X
mailto:KCHUR026@uottawa.ca
https://doi.org
https://doi.org/10.20982/tqmp.17.1.S001
https://www.orcid.org/0000-0003-3067-9432

¦ 2021 Vol. 17 no. 1

Figure 1 Creating variables.

Figure 2 Example of using variables in a function.

and the results should be identical to Fig. 2. Congratula-

tions, you have created your first few variables!

Note: You may have noticed that different colours have
appeared in your notebook. These colours are used to

help differentiate between data types. Just as nouns, verbs

and adjectives are all different and have special uses in a

phrase, so are the variables, strings and functions (just to

name a few) in a script. Table 1 sums up the meaning of

each default colour for three popular IDEs.

Creating variables is very important for saving and

reusing information. Think of creating an experiment

where in each trial you must display the same prompt to

your participants. Instead of having to copy/paste your en-

tire prompt for each trial, you can save it as a variable and

use it repeatedly. This allows you to save time and avoid

lengthy code. In Python, you can attribute a variety of in-

formation to variables, such as numbers, phrases and even

entire functions. That being said, there are a few important

tips to remember when creating a variable:

• Spaces are not allowed in variable names, but under-

scores are commonly used to separate words. For ex-

ample, psychology_rocks works, but psychology rocks
will cause an error.

• Variable names can contain only letters, numbers, and

underscores. Most importantly, they cannot start with

a number. For instance, you can call a variable Ban-
dura_1 but not 1_Bandura.

• Avoid using Python’s predefined function names as

variable names, such as the word “print”.

• Variable names should be short but descriptive. For ex-

ample, name is better than n and student_name is better
than s_n. Once you start building very long scripts, you
may start to lose track of what some of your variables

mean. Good coding practice includes naming your vari-

ables something meaningful to improve readibility for

yourself and others.

Now that you have a better understanding of what vari-

ables are, let’s dive into the specific data types that can be

saved and stored.

Data Types
There are several different data types that are available in

Python, each with its own utility. Outlined below are the

fourmost common data types you will encounter. For each

one, a quick explanation and a simple example of how it

may pertain to research in psychology can be found. Let’s

begin learning the ABCs of Python!

Strings
A string is a sequence of characters, anything that you

type (a letter, a number, a symbol, or a space), enclosed in

‘single’ or “double” quotation marks. An example of how

strings can be used is when a researcher records a sub-

ject’s response to the open ended question “How has your

The Quantitative Methods for Psychology S22

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.S001

¦ 2021 Vol. 17 no. 1

depression been affecting your life?” (see Fig. 3.). Strings

are immutable, which means that you cannot change the

contents of a string after it has been created, you can only

write over it (redefine the variable).

Integers
Integers are positive or negative whole numbers (no deci-

mal point). An example of this could be how a researcher

in the field of neuroscience would count the number of ac-

tive neurons at a given time (see Fig. 4.).

Floats
Floats, or float point real values, are real numbers (includ-

ing numbers with a decimal point). An example of a float

would be recording a participant’s reaction time in mil-

liseconds to a given task (see Fig. 5.).

Note: In certain cases, you may encounter floats or inte-
gers as either 32 or 64 bit. This simply refers to the num-

ber of bits you are limiting the number to be. Essentially,

float64 has double the number of values after the decimal

point and requires more bits than float32.

Booleans
Booleans are also known as logical expressions, meaning

that they are evaluated as True or False (1 or 0). An ex-
ample would be responses to a questionnaire whereby a

participant indicates positively or negatively to experienc-

ing anxiety or depression (see Fig. 6.).

At any time, the type of data stored in a variable can be

easily checked using the built-in type() function. The out-
put from this function will indicate the data type (see Fig.

7.).

Data Structures
If data types are the ABCs of Python, then data structures

would be words. They define how your variables are struc-

tured and show how to store multiple data types in the

same variable. Outlined below are four data structures

that you will encounter while coding.

Set
A set is a group of objects that is unordered, where no du-

plicates are allowed. Delimited by { }, sets can be used to

store objects of any data type (string, integers, etc.). An ex-

ample would be creating a set for storing the symptoms of

a particular disorder, such as ADHD (American Psychiatric

Association, 2000), where the order of symptoms is not im-

portant (see Fig. 8.).

List
Lists are ordered sequences of objects that are delimited

by []. Lists may contain objects of any data type, and data

types can even be mixed within the same list. An exam-

ple of a list would be for storing IQ scores for a group of

participants, where the position of the score in the list (in-

dex) matches the participant’s identification number (See

Fig.9.).

Since lists are ordered, you can use indexing to re-

trieve information from a specific position in a list by using

square brackets after the variable name. Indexing in the

Python language starts at 0, meaning the first object in a

list is 0, the second is 1, etc. For example, if a researcher is

interested in the first participant’s IQ score, they could use

IQ_scores[0] to retrieve the first object in that list (see Fig.

10.).

Tuple
Tuples are similar to lists, as they are ordered sequences of

objects. However, they are immutable (cannot be altered,

only overwritten) and are delimited by (). A benefit of cre-

ating an immutable object is that they take up less space

in the computer system’s memory. An example of a tuple

would be storing an individual participant’s reaction time

and whether they are part of the control group or not (see

Fig. 11.).

Dictionary
Dictionaries are similar to sets as they are unordered, but

they are a little different. They have a unique format that

allows them to be accessed in a similar way to indexing.

Dictionnaries use objects known as “keys” to retrieve other

stored objects, known as “values”. In a dictionnary, these

“keys” cannot be repeated (duplicates), but the “values”

stored inside can be repeated as much as needed. In addi-

tion, the objects are mutable, meaning that your code can

update and change these values when specified to do so.

An example where a researcher might use a dictionary is

for storing information about different species of rodents,

like whether a particular species of rodent has a specific

gene or not and their average weight in grams. To achieve

this, the researcher would create an empty dictionary for

Rodent_species using {}. They could then create a “key” for

each species of rodent and create a map that indicates var-

ious characteristics (or “values”) that are specific to that

species, such as the presence of a gene and the average

weight (see Fig. 12.).

To access specific information in a dictionary, similar

to indexing, square brackets are used. However, instead of

a numeric value indicating position, the “key” is used, as

dictionaries are unordered. Relating back to the previous

example, if a researcher had a dictionary of rodent species

with relevant information stored, but was only interested

in the Mus musculus species, they could specify this “key”
and retrieve all the mapped “values” related to this species

The Quantitative Methods for Psychology S32

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.S001

¦ 2021 Vol. 17 no. 1

Figure 3 String example.

Figure 4 Integer example.

(see Fig. 13.).

Note: For a summary of all the different data structures,
see Table 2 in the appendix.
Comments in Python
In order to stay organized, Python’s programming lan-

guage provide users with an easy way to label or annotate

sections of their code. Referred to as a comment, these can

be used to remind yourself what a certain section of code

is doing and label this information. This is specifically use-

ful if you are working with others. Python will completely

ignore your comments, meaning that they will not change

the way the code is run or interpreted. This means you

can use comments to isolate certain lines of code temporar-

ily and verify if it is working as intended. The main way

to comment in Python is to use the hash mark (#). Com-

mon practice is to use these comments on a separate line

or inline with other code. See Figure 14 for an example of

how comments can be used to clarify some of the examples

given above.

Note: It is a very important habit to always write com-
ments in your code. As time progresses, your skill

will change and you will forget what certain variable’s

acronyms mean as well as what some functions are doing.

Commenting will save you time in the long run and will

avoid future confusion. Also, commenting is very useful

for others that are trying to use or replicate your code.

Indentation
A block of code is related lines of code that are grouped

together for a specific purpose. For example, if several dif-

ferent sections are all part of the same function, theywould

be found in the same block. In order to define these blocks,

many languages use curly brackets {}, but Python uses in-

dentation. This means that each line pertaining to a block

is indented by the same amount to the right. It is also pos-

sible to indent multiple times, effectively combining multi-

ple blocks of code, embedding one within another. This

is known as nesting and helps the software understand

which sections of your code take priority. Fun fact: This

is where Python gets its name! Once your script is large

and involves several blocks of code, it will start to look like

a snake slithering due to the indentation. You will see this

effect of indentation for the rest of this tutorial.

Logic in Python
As per any other programming language, Python has vari-

ous ways of activating certain blocks of codes (conditional,

if, elif and else statements). For instance, if you have a

block of code that should only activate if a participant’s

name is provided, you can do so by using conditional and

logical statements. These are special types of code that al-

low any user to incorporate logic into their program. Think

of mathematical conditions, such as the symbols <, >, if,
etc., these can all be used to determine which block of code

should be executed. When checking if the coding condi-

tions are met, booleans are employed that either return a

True or False value. This determines if the block of code
should be executed (True) or not (False). To make this
more concrete, let’s dive into a few examples to see how

they work.

Figure 5 Float example.

The Quantitative Methods for Psychology S42

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.S001

¦ 2021 Vol. 17 no. 1

Figure 6 Boolean example.

Figure 7 Example of using type().

Conditional Statements
As the name implies, it is a statement that is either True
or False based on a particular rule/condition. You have
already encountered many of them through mathematics.

Examples of common conditional statements that can be

found in Python are the greater than >, smaller or equal
to=< and not equal to ! =, just to name a few. To be more
precise, a conditional statement is a way for a program-

mer to create a logical rule that can be incorporated into

a script. For a full description of the most common con-

ditional statements, their meaning, and a simple example,

see Fig. 15.

Note: the == and != statements can also be used for other
data types as well (such as strings). This can be very help-

ful, especially to verify if duplicates exist in a database.

Furthermore, there is a fundamental distinction to remem-

ber between the = and == signs. The first is always used to

assign a variable to an object (as seen at the beginning of

the tutorial) and the second is used to verify if two objects

are the same (is the string “Hello” the same as “Bonjour”).

There are also ways of combining two or more con-

ditional statements by using logical operators. The main

three are the: and, or, and not operators. The and com-
bines conditional statements and requires all of them to be

met to return a True value. The or allows more flexibil-
ity by returning a True value as long as at least one of the
conditional statements are met. The not verifies if a con-

ditional statement is not met and if this is the case, it will

return a True value. Fig. 16. illustrates a small example
for each operator.

If, elif and else Statements
You can also use conditional statements to either execute

(run the code) or to simply bypass it (ignore it). These if,
elif and else statements rely on the value of the booleans
to determine their action. In other words, if the condition

is met, execute the desired block of code, if not, ignore it.

The if statement implies if True, run the block of code. The
elif is a secondary if statement and stands for “else if”.
When the first if statement’s conditions are not met, move
on to the elif statements and check their conditions. You
can use as many elif statements in a row as needed. The
else statement is executed if none of the previous if and
elif statements are True, and encompasses all remaining
possible conditions. In other words, the logic is as follows:

Run the block of code above if any of the if or elif state-
ments are True. If none of these statements are met, run
the else block of code. A simple example to better under-
stand this would be to create an if, elif and else statement
that prints out a participant’s answer as either being cor-

rect, incorrect or invalid based on their values (see Fig.

17.).

To solidify this concept, let’s re-examine this code, but

this time in simple phrase format:

Figure 8 Set example.

The Quantitative Methods for Psychology S52

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.S001

¦ 2021 Vol. 17 no. 1

Figure 9 List example.

Figure 10 Using indexing in a list.

• If the answer is greater than 40, display “Correct”,

• Else, if the answer is below or equal to 40, display “In-

correct”

• Else, for any other value (strings, boolean, etc.), display

“Invalid Format”

Note: You can have an infinite number of if statements by
adding more elif and you can nest blocks of these state-
ments inside other if, elif and else statements. That being
said, the convention for the if, elif and else statements al-
ways follows this structure:

if (first conditional statement is True):
Perform first desired action

elif (second conditional statement is True):
if (sub conditional statement is True):
Perform desired action

else:
if (sub of sub conditional statement is True):
...

...

elif (n conditional statement is True):
Perform n desired action

else:
Perform desired action (if none of the initial

condition are met)

Note: this is a great example of indentation as mentioned
above.

Loops
While Loops
While loops in Python will execute a statement or a block
of code as long as a set condition is met. This form of loop-

ing is useful when you do not know how many times you

will need to perform a certain action before coding it. It is

also beneficial if the number of times you will need to per-

form the action varies based on your data. The body of the

while loop is defined with indentation. In order to code a
while loop, start with the word “while” and your testing
condition. Then, indent all of the code you want to run in

the while loop (see Fig. 18). The while loop will continu-
ously execute the code in the body of the loop as long as the

condition you set is still met.

Note: There are two options to end an iteration early, by
either jumping back to the beginning of the loop (con-
tinue) or jumping to the next section of code (break).
When using loops, Python requires some entry in the body

of a loop or a specific statement to tell it what to do. The

break statements can be used to stop a loop and break out
of it even if the condition set is still True. Using a break
statement will make the program exit the loop and jump

to the next section of code that follows it (see Fig. 18). By

using the continue statements, you are ensuring that the
current iteration stops but not by breaking out of the loop.

Using continue allows you to jump back to the start of a

Figure 11 Tuple example.

The Quantitative Methods for Psychology S62

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.S001

¦ 2021 Vol. 17 no. 1

Figure 12 Dictionary example

Figure 13 Using keys to access values in a dictionary.

loop and continue iterating through your code. There are

also pass statements. These act as placeholders that tell the
program to do nothing. Essentially they are a null opera-

tion that fulfill the entry requirements of statements, loops

or functions.

For Loops
For loops in Python are used for iterating over a sequence,
such as lists, dictionaries, strings, etc. They can be used to

execute a series of statements a fixed number of times. As

in while loops, the break, continue, and pass statements
are all still very useful. Another useful function when us-

ing for loops is range(). The range function can be used in
a for loop to execute the loop a specific amount of times.
For instance, if a researcher wanted to iterate through a

questionnaire, they could use a for loop and the range
function to iterate a defined number of times over a list, as

seen in Fig.19. The logic behind this example can be trans-

lated as follows: For each question ranging from 0 to 4 (re-

member, Python starts at 0 not 1) the for loop will print out
the current iteration as the question number.

Loops can also be nested in order to perform more

complex tasks. If we combine our two previous examples,

we can nest a for loop within a while loop. In this ex-
ample, a researcher has a survey that is incomplete. The

while loop will continue until the survey is completed.
Nested within this loop is a for loop that iterates through
each question in the survey and prints the current question

number. An if statement is then used to determine when
the questionnaire has reached the fifth and final question

(end of the for loop), thus completing the survey and end-
ing thewhile loop.
A Comprehensive Example
Now that you are familiar with the basics of Python, we can

build upon our knowledge and create simple yet very pow-

erful scripts. In this tutorial, we have explained many dif-

ferent concepts, but in order to summarize them and fully

display the possibilities for your research in psychology,

we will tackle a comprehensive example (see Fig. 21). The

goal will be to create a general purpose corrector that can

be used either for questionnaires, exams, or other similar

tasks in psychology. In this particular example, we will use

fictional results from the same-different task found in cog-

Figure 14 Example of a block comment and an inline comment

The Quantitative Methods for Psychology S72

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.S001

¦ 2021 Vol. 17 no. 1

Figure 15 Example of conditional statements.

nition. That being said, it is important to remember that

this code could easily be adapted and expanded to accom-

modate any type of questionnaires, exams, or tasks.

To begin, we created a variable called Answer_key and
assigned a list containing the correct responses to the task

to it. Then, we created a second variable called Partici-
pant_responses and assigned it a list containing the partic-
ipant’s responses. Next, we created an empty list, called

Marking, to be used to store the Participant_responses as
either a 1 for correct or 0 for incorrect. To ensure that we

properly iterated/looped over all the answers, we created

a variable called Total_trials that was based on how many
answers were in the Answer_key (5) to use as one of the
ending conditions for our while loop. Lastly we created a
variable called task_complete and gave it a False value so
thewhile loop would run.
Once all variables were defined, we created our while

loop. Directly inside of thewhile loop, we created a nested
for loop that was set up to cycle through each trial and ex-
ecute our desired operation. By using the range() function
we defined that the for loop would execute the code up un-
til the Total_trials corresponding value (previously set to
5). To create our operation/conditional statement, we used

the first if statement to check if the participant’s response
matched the answer in the answer key for that trial. If a

match was found, the script would print the trial number

followed by “Correct”. To print the trial number, the str()
function was used to convert the number into a string so

it could be printed with the other strings. We then added

the instruction to use the .append() function to add a “1”

to the Marking list. Our goal was to use the Marking list
after the loops finished in order to calculate the average

of correct responses. We also added an else for when the
participant’s answer was incorrect. If that was the case,

the program would print the trial number followed by “In-

correct”. We also added “0” to the Marking list by using
.append().
To verify if our code should end and display our re-

sults, we created an if statement that checked if the trial
value was equal to the last index of our Answer_key. If
the loop had reached the last trial, it would change the

task_complete value from False to True, thus ending the
while loop. To ensure that our while loop concluded its
function, we added a print out a message saying that the

same-different task was completed. As any good corrector,

we wanted to add the possibility to see the calculated aver-

age of correct responses for a given participant. Thus, we

created a variable called Total_correctwhich contained the
sums of all of the answers found in the Marking list. This
was done by using the sum() function. The average was
then calculated by dividing the Total_correct variable by
the Total_trials variable and was stored in a new variable
called Avg_Correct. To ensure that the user would be able
to see the participant’s average as well as to thank them for

using our program, we added two lines of code printing out

the average and our message.

Note: As mentioned before, this code can be easily

adapted to any similar tasks such as marking question-

naires or exams. It can also be scaled to iterate over a large

number of participants or to handle other types of datasets.

The Quantitative Methods for Psychology S82

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.S001

¦ 2021 Vol. 17 no. 1

Figure 16 Example of logical operators.

Figure 17 Example of if, elif and else statements.

So What’s Next?
Now that you’ve learned the fundamentals of Python’s pro-

gramming language, it’s time to let your imagination run

wild and practice these concepts by creating your own

scripts. The key to becoming fluent in any language is to

speak and write as frequently as possible without any fear

of failing. Thus, it is important to find interesting chal-

lenges that can motivate your brain and fingers to write

code. A good place to start is with a Kaggle coding chal-

lenge, that can be found at www.kaggle.com. There, you

can browse various challenges suited for any programmer,

beginner or professional. Another possibility would be to

look into your daily tasks and pinpoint anything that is be-

ing repeated exhaustively. In these situations, a simple for
orwhile loopwith certain conditional statementsmay save
you time and allow you to automate these tasks. Regard-

less of your next step, the most important action to take is

to practice with patience and to challenge yourself by div-

ing into more advanced Python functionality. For example,

how to create functions, access libraries and incorporate

sophisticated data analysis into your code. By doing so,

you will start saving time in your research, impress your

colleagues with innovative methodology and will have a

new powerful tool to tackle any project.

References
American Psychiatric Association. (2000). Diagnostic and

statisticalmanual ofmental disorders-iv text revision,

apa.Washington, DC.
Harwani, B. (2012). Introduction to Python programming

and developing GUI applications with PyQT. Nelson
Education.

Ngo, A. (2017). Introduction to Python programming: Be-

ginner to advanced, practical guide, tips and tricks,

easy and comprehensive.

Pine, D. J. (2019). Introduction to Python for science and en-
gineering. CRC Press.

The Quantitative Methods for Psychology S92

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.S001
www.kaggle.com

¦ 2021 Vol. 17 no. 1

Figure 18 Example ofwhile loop and break.

Figure 19 Example of for loop.

Summerfield, M. (2010). Programming in python 3: A com-
plete introduction to the Python language. Addison-
Wesley Professional.

Van Rossum, G., & Drake, F. L. (2011). The Python language
reference manual. Network Theory Ltd.

Appendix
Table 2 shows the basic comparisons between the different variable types discussed in this tutorial. Ordered means that

they have an order. In other words, they will always be displayed in the same order. Changeable (or mutable) means

that the object can be changed after it is created. Indexing means the variable type has a built-in indexing system, such

as an index key for each value. Duplicates means the variable type allows for duplicate members.

Citation
Church, K., Rolon-Mérette, T., Ross, M., & Rolon-Mérette, D. (2021). Introduction to Python’s syntax. The Quantitative Meth-

ods for Psychology, 17(1), S1–S12. doi:10.20982/tqmp.17.1.S001

Copyright © 2021, Church, Rolon-Mérette, Ross, and Rolon-Mérette. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited

and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is

permitted which does not comply with these terms.

The Quantitative Methods for Psychology S102

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.S001
https://dx.doi.org/10.20982/tqmp.17.1.S001

¦ 2021 Vol. 17 no. 1

Figure 20 Example of nested loops.

Table 1 Base colour coding for different IDEs.

Python Shell Jupyter Spyder (Dark Theme)
Variable Black Black White

String Green Dark Red Salmon

Function Purple Dark Green Light Orange

Command Orange Dark Green Light Orange

User Functions Blue Black Yellow

Comment Dark Red Light Green Light Green

Error Messages Light Red Light Red Light Red

Received: 11/08/2020∼ Accepted: 23/09/2020

Table 2 Overview of Variable Types and their properties.

Variable Types Ordered Changeable objects Allows indexing Allows duplicates
List yes yes yes yes

Tuple yes no yes yes

Set no yes yes no

Dictionary no yes no no

The Quantitative Methods for Psychology S112

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.S001

¦ 2021 Vol. 17 no. 1

Figure 21 Example incorporating many concepts from the tutorial.

The Quantitative Methods for Psychology S122

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.S001

